POWER SYSTEM - I

Introduction of Generating Stations

In this modern world, the dependence on electricity is so much that it has become a part and parcel of our life. The ever increasing use of electric power for domestic, commercial and industrial purposes necessitates to pro- vide bulk electric power economically. This is achieved with the help of suitable power producing units, known as *Power plants or Electric power generating stations*. The design of a power plant should incorporate two important aspects. Firstly, the selection and placing of necessary power-generating equipment should be such so that a maximum of return will result from a mini- mum of expenditure over the working life of the plant. Secondly, the operation of the plant should be such so as to provide cheap, reliable and continuous service. In this chapter, we shall focus our attention on various types of generating stations with special reference to their advantages and disadvantages.

Generating Stations

Bulk electric power is produced by special plants known as generating stations or power plants. A generating station essentially employs a prime mover coupled to an alternator for the production of electric power. The prime mover (*e.g.*, steam turbine, water turbine etc.) converts energy from some other form into mechanical energy. The alternator converts mechanical energy of the prime mover into electrical energy. The electrical energy produced by the generating station is transmitted and distributed with the help of conductors to various consumers. It may be emphasized here that apart from prime mover-alternator combination, a modern generating station employs several auxiliary equipment and instruments to ensure cheap, reliable and continuous service.

Depending upon the form of energy converted into electrical energy, the generating stations are classified as under:

(i)	Steam	power stations
-----	-------	----------------

- (iii) Diesel power stations
- (*ii*) Hydroelectric powerstations(*iv*) Nuclear powerstations

Steam Power Station (Thermal Station)

A generating station which converts heat energy of coal combustion into electrical energy is known as a **steam power station**.

A steam power station basically works on the Rankine cycle. Steam is produced in the boiler by utilising the heat of coal combustion. The steam is then expanded in the prime mover (*i.e.*, steam turbine) and is condensed in a condenser to be fed into the boiler again. The steam turbine drives the alternator which converts mechanical energy of the turbine into electrical energy. This type of power station is suitable where coal and water are available in abundance and a large amount of electric power is to be generated.

Advantages

- (i) The fuel (*i.e.*, coal) used is quite cheap.
- (ii) Less initial cost as compared to other generating stations.
- (iii) It can be installed at any place irrespective of the existence of coal. The coal can be trans- ported to the site of the plant by rail or road.
- (iv) It requires less space as compared to the hydroelectric powerstation.
- (v) The cost of generation is lesser than that of the diesel power station.

Disadvantages

- (i) It pollutes the atmosphere due to the production of large amount of smoke and fumes.
- (ii) It is costlier in running cost as compared to hydroelectric plant.

Schematic Arrangement of Steam Power Station

Although steam power station simply involves the conversion of heat of coal combustion into electri- cal energy, yet it embraces many arrangements for proper working and efficiency. The schematic arrangement of a modern steam power station is shown in Fig. 2.1. The whole arrangement can be divided into the following stages for the sake of simplicity :

- **1.** Coal and ashhandling arrangement
- 3. Steam turbine

Steam generatingplant
Alternator

5. Feed water

6. Cooling arrangement

Steam Generating Plant

Coal and ash handling plant. The coal is transported to the power station by road or rail and is stored in the coal storage plant. Storage of coal is primarily a matter of protection against coal strikes, failure of transportation system and general coal shortages. From the coal storage plant, coal is delivered to the coal handling plant where it is pulverised (*i.e.*, crushed into small pieces) in order to increase its surface exposure, thus promoting rapid combustion without using large quantity of Excess air. The pulverized coal is fed to the boiler by belt conveyors. The coal is burnt in the boiler and the ash produced after the complete combustion of coal is removed to the ash handling plant and then delivered to the ash storage plant for disposal. The removal of the ash from the boiler furnace is necessary for proper burning of coal. It is worthwhile to give a passing reference to the amount of coal burnt and ash produced in a modern thermal power station. A 100 MW station operating at 50% load factor may burn about 20,000 tons of coal per month and ash produced may be to the tune of 10% to 15% of coal fired *i.e.*, 2,000 to 3,000 tons. In fact, in a thermal station, about 50% to 60% of the total operating cost consists of fuel purchasing and itshandling.

Steam generating plant. The steam generating plant consists of a boiler for the production of steam and other auxiliary equipment for the utilisation of flue gases.

(i) *Boiler*. The heat of combustion of coal in the boiler is utilised to convert water into steam at high temperature and pressure. The flue gases from the boiler make their journey through super- heater, economiser, air pre-heater and are finally exhausted to atmosphere through the chimney.

(i) *Superheater.* The steam produced in the boiler is wet and is passed through a superheater where it is dried and superheated (*i.e.*, steam temperature increased above that of boiling point of water) by the flue gases on their way to chimney. Superheating provides two principal benefits. Firstly, the overall efficiency is increased. Secondly, too much condensation in the last stages of turbine (which would cause blade corrosion) is avoided. The superheated steam from the superheater is fed to steam turbine through the main valve.

(iii) *Economiser.* An economiser is essentially a feed water heater and derives heat from the flue gases for this purpose. The feed water is fed to the economiser before supplying to the boiler. The economiser extracts a part of heat of flue gases to increase the feed water temperature.

(iv) *Air preheater.* An air preheater increases the temperature of the air supplied for coal burning by deriving heat from flue gases. Air is drawn from the atmosphere by a forced draught fan and is passed through air preheater before supplying to the boiler furnace. The air preheater extracts heat from flue gases and increases the temperature of air used for coal combustion. The principal benefits of preheating the air are increased thermal efficiency and increased steam capacity per square metre of boiler surface.

Steam turbine. The dry and superheated steam from the superheater is fed to the steam turbine through main valve. The heat energy of steam when passing over the blades of turbine is converted into mechanical energy. After giving heat energy to the turbine, the steam is exhausted to the *condenser* which condenses the exhausted steam by means of cold water circulation.

Alternator. The steam turbine is coupled to an alternator. The alternator converts mechanical energy of turbine into electrical energy. The electrical output from the alternator is delivered to the bus bars through transformer, circuit breakers and isolators.

Feed water. The condensate from the condenser is used as feed water to the boiler. Some water may be lost in the cycle which is suitably made up from external source. The feed water on its way to the boiler is heated by water heaters and economiser. This helps in raising the overall efficiency of the plant.

Cooling arrangement. In order to improve the efficiency of the plant, the steam exhausted from the turbine is condensed* by means of a condenser. Water is drawn from a natural source of supply such as a river, canal or lake and is circulated through the condenser. The circulating water takes up the heat of the exhausted steam and itself becomes hot. This hot water coming out from the condenser is discharged at a suitable location down the river. In case the availability of water from the source of supply is not assured throughout the year, *cooling towers* are used. During the scarcity of water in the river, hot water from the condenser is passed on to the cooling towers where it is cooled. The cold water from the cooling tower is reused in the condenser.

Choice of Site for Steam Power Stations

In order to achieve overall economy, the following points should be considered while selecting a site for a steam power station :

Supply of fuel. The steam power station should be located near the coal mines so that transportation cost of fuel is minimum. However, if such a plant is to be installed at a place where coal is not available, then care should be taken that adequate facilities exist for the transportation of coal.

Availability of water. As huge amount of water is required for the condenser, therefore, such a plant should be located at the bank of a river or near a canal to ensure the continuous supply of water.

Transportation facilities. A modern steam power station often requires the transportation of material and machinery. Therefore, adequate transportation facilities must exist *i.e.*, the plant should be well connected to other parts of the country by rail, road. etc.

Cost and type of land. The steam power station should be located at a place where land is cheap and further extension, if necessary, is possible. Moreover, the bearing capacity of the ground should be adequate so that heavy equipment could be installed.

Nearness to load centres. In order to reduce the transmission cost, the plant should be located near the centre of the load. This is particularly important if *d.c.* supply system is adopted. However, if *a.c.* supply system is adopted, this factor becomes relatively less important. It is because *a.c.* power can be transmitted at high voltages with consequent reduced transmission cost. Therefore, it is possible to install the plant away from the load centres, provided other conditions are favourable.

Distance from populated area. As huge amount of coal is burnt in a steam power station, therefore, smoke and fumes pollute the surrounding area. This necessitates that the plant should be located at a considerable distance from the populated areas.

Conclusion. It is clear that all the above factors cannot be favourable at one place. However, keeping in view the fact that now-a-days the supply system is *a.c.* and more importance is being given to generation than transmission, a site away from the towns may be selected. In particular, a site by river side where sufficient water is available, no pollution of atmosphere occurs and fuel can be transported economically, may perhaps be an ideal choice.

Efficiency of Ste a m Power Station

The overall efficiency of a steam power station is quite low (about 29%) due mainly to two reasons. Firstly, a huge amount of heat is lost in the condenser and secondly heat losses occur at various stages of the plant. The heat lost in the condenser cannot be avoided. It is because heat energy cannot be converted into mechanical energy without temperature difference. The greater the temperature difference, the greater is the heat energy converted* into mechanical energy. This necessitates to keep the steam in the condenser at the lowest temperature. But we know that greater the temperature difference, greater is the amount of heat lost. This explains for the low efficiency of such plants.

Thermal efficiency. The ratio of heat equivalent of mechanical energy transmitted to the turbine shaft to the heat of combustion of coal is known as **thermal efficiency** of steam power station.

power station.		Heat equivalent of mech. energy	
Thermal efficiency.	$\eta_{thermal} =$	transmitted to turbine shaft	

The thermal efficiency of a modern steam power station is about 30%. It means that if 100 calories of heat is supplied by coal combustion, then mechanical energy equivalent of 30 calories will be available at the turbine shaft and rest is lost. It may be important to note that more than 50% of total heat of combustion is lost in the condenser. The other heat losses occur in flue gases, radia- tion, ash etc.

Overall efficiency. The ratio of heat equivalent of electrical output to the heat of combustion of coal is known as **overall efficiency** of steam power station *i.e.* The overall efficiency of a steam power station is about 29%. It may be seen that overall effi- ciency is less than the thermal efficiency. This is expected since some losses (about 1%) occur in the alternator. The following relation exists among the various efficiencies.

Overall efficiency = Thermal efficiency ' Electrical efficiency

Equipment of Steam Power Station

A modern steam power station is highly complex and has numerous equipment and auxiliaries. How- ever, the most important constituents of a steam power station are :

- **1.** Steam generating equipment **2.** Condenser **3.** Primemover
- **4.** Water treatment plant **5.** Electrical equipment.

Steam generating equipment. This is an important part of steam power station. It is concerned with the generation of superheated steam and includes such items as boiler, boiler furnace, superheater, economiser, air pre-heater and other heat reclaiming devices.

Boiler. A boiler is closed vessel in which water is converted into steam by utilising the heat of coal combustion. Steam boilers are broadly classified into the following two types:

(*a*) Water tube boilers (*b*) Fire tube boilers

In a water tube boiler, water flows through the tubes and the hot gases of combustion flow over these tubes. On the other hand, in a fire tube boiler, the hot products of combustion pass through the tubes surrounded by water. Water tube boilers have a number of advantages over fire tube boilers *viz.*, require less space, smaller size of tubes and drum, high working pressure due to small drum, less liable to explosion etc. Therefore, the use of water tube boilers has become universal in large capac- ity steam power stations.

Boiler furnace. A boiler furnace is a chamber in which fuel is burnt to liberate the heat energy. In addition, it provides support and enclosure for the combustion equipment *i.e.*, burners. The boiler furnace walls are made of refractory materials such as fire clay, silica, kaolin etc. These materials have the property to resist change of shape, weight or physical properties at high tempera- tures. There are following three types of construction of furnace walls :

- (a) Plain refractory walls
- (b) Hollow refractory walls with an arrangement for air cooling
- (c) Water walls.

The plain refractory walls are suitable for small plants where the furnace temperature may not be high. However, in large plants, the furnace temperature is quite high* and consequently, the refrac- tory material may get damaged. In such cases, refractory walls are made hollow and air is circulated through hollow space to keep the temperature of the furnace walls low. The recent development is to use water walls. These consist of plain tubes arranged side by side and on the inner face of the refractory walls. The tubes are connected to the upper and lower headers of the boiler. The boiler water is made to circulate through these tubes. The water walls absorb the radiant heat in the furnace which would otherwise heat up the furnace walls.

Superheater. A superheater is a device which superheats the steam *i.e.*, it raises the tempera- ture of steam above boiling point of water. This increases the overall efficiency of the plant. A superheater consists of a group of tubes made of special alloy steels such as chromium-molybdenum. These tubes are heated by the heat of flue gases during their journey from the furnace to the chimney.

The steam produced in the boiler is led through the superheater where it is superheated by the heat of flue gases. Superheaters are mainly classified into two types according to the system of heat transfer from flue gases to steam *viz*.

(a) Radiant superheater

(*b*) Convectionsuperheater

The radiant superheater is placed in the furnace between the water walls and receives heat from the burning fuel through radiation process. It has two main disadvantages. Firstly, due to high furnace temperature, it may get overheated and, therefore, requires a careful design. Secondly, the temperature of superheater falls with increase in steam output. Due to these limitations, radiant superheater is not finding favour these days. On the other hand, a convection superheater is placed in the boiler tube bank and receives heat from flue gases entirely through the convection process. It has the advantage that temperature of superheater increases with the increase in steam output. For this reason, this type of superheater is commonly used these days.

Economiser. It is a device which heats the feed water on its way to boiler by deriving heat from the flue gases. This results in raising boiler efficiency, saving in fuel and reduced stresses in the boiler due to higher temperature of feed water. An economiser consists of a large number of closely spaced parallel steel tubes connected by headers of drums. The feed water flows through these tubes and the flue gases flow outside. A part of the heat of flue gases is transferred to feed water, thus raising the temperature of thelatter.

Air Pre-heater. Superheaters and economisers generally cannot fully extract the heat from flue gases. Therefore, pre-heaters are employed which recover some of the heat in the escaping gases. The function of an air pre-heater is to extract heat from the flue gases and give it to the air being supplied to furnace for coal combustion. This raises the furnace temperature and increases the thermal efficiency of the plant. Depending upon the method of transfer of heat from flue gases to air, air pre-heaters are divided into the following two classes:

(*a*) Recuperative type

(b) Regenerativetype

The recuperative type air-heater consists of a group of steel tubes. The flue gases are passed through the tubes while the air flows externally to the tubes. Thus heat of flue gases is transferred to air. The regenerative type air pre-heater consists of slowly moving drum made of corrugated metal plates. The flue gases flow continuously on one side of the drum and air on the other side. This action permits the transference of heat of flue gases to the air being supplied to the furnace for coal combustion.

Condensers. A condenser is a device which condenses the steam at the exhaust of turbine. It serves two important functions. Firstly, it creates a very low *pressure at the exhaust of turbine, thus permitting expansion of the steam in the prime mover to a very low pressure. This helps in converting heat energy of steam into mechanical energy in the prime mover. Secondly, the condensed steam can be used as feed water to the boiler. There are two types of condensers, namely:

(i) Jet condenser (ii) Surface condenser

In a jet condenser, cooling water and exhausted steam are mixed together. Therefore, the tem- perature of cooling water and condensate is the same when leaving the condenser. Advantages of this type of condenser are : low initial cost, less floor area required, less cooling water required and low maintenance charges. However, its disadvantages are : condensate is wasted and high power is re- quired for pumping water. In a surface condenser, there is no direct contact between cooling water and exhausted steam. It consists of a bank of horizontal tubes enclosed in a cast iron shell. The cooling water flows through the tubes and exhausted steam over the surface of the tubes. The steam gives up its heat to water and is itself condensed. Advantages of this type of condenser are : condensate can be used as feed water, less pumping power required and creation of better vacuum at the turbine exhaust. However, disad- vantages of this type of condenser are : high initial cost, requires large floor area and high mainte- nance charges.

Prime movers. The prime mover converts steam energy into mechanical energy. There are two types of steam prime movers *viz.*, steam engines and steam turbines. A steam turbine has several advantages over a steam engine as a prime mover *viz.*, high efficiency, simple construction, higher speed, less floor area requirement and low maintenance cost. Therefore, all modern steam power stations employ steam turbines as primemovers.

Steam turbines are generally classified into two types according to the action of steam on moving blades *viz*.

(i) Impulse turbines

(*ii*) Reactionsturbines

In an impulse turbine, the steam expands completely in the stationary nozzles (or fixed blades), the pressure over the moving blades remaining constant. In doing so, the steam attains a high velocity and impinges against the moving blades. This results in the impulsive force on the moving blades which sets the rotor rotating. In a reaction turbine, the steam is partially expanded in the stationary nozzles, the remaining expansion takes place during its flow over the moving blades. The result is that the momentum of the steam causes a reaction force on the moving blades which sets the rotor in motion.

Water treatment plant. Boilers require clean and soft water for longer life and better efficiency. However, the source of boiler feed water is generally a river or lake which may contain suspended and dissolved impurities, dissolved gases etc. Therefore, it is very important that water is first purified and softened by chemical treatment and then delivered to the boiler. The water from the source of supply is stored in storage tanks. The suspended impurities are removed through sedimentation, coagulation and filtration.

Dissolved gases are removed by aeration and degasification. The water is then *'softened'* by removing temporary and permanent hardness through different chemical processes. The pure and soft water thus available is fed to the boiler for steam generation.

Electrical equipment. A modern power station contains numerous electrical equipment. However, the most important items are:

Alternators. Each alternator is coupled to a steam turbine and converts mechanical energy of the turbine into electrical energy. The alternator may be hydrogen or air cooled. The necessary excitation is provided by means of main and pilot exciters directly coupled to the alternator shaft.

Transformers. A generating station has different types of transformers, viz.,

- (a) Main step-up transformers which step-up the generation voltage for transmission of power.
- **(b)** Station transformers which are used for general service (*e.g.*, lighting) in the power station.
- (c) Auxiliary transformers which supply to individual unit-auxiliaries.

Switchgear. It houses such equipment which locates the fault on the system and isolate the faulty part from the healthy section. It contains circuit breakers, relays, switches and other control devices.

Nuclear Power Station

A generating station in which nuclear energy is converted into electrical energy is known as a **nuclear power station**.

In nuclear power station, heavy elements such as Uranium (U^{235}) or Thorium (Th^{232}) are subjected to nuclear fission in a special apparatus known as a *reactor*. The heat energy thus released is utilized in raising steam at high temperature and pressure. The steam runs the steam turbine which converts steam energy into mechanical energy. The turbine drives the alternator which converts mechanical energy into electrical energy.

The most important feature of a nuclear power station is that huge amount of electrical energy can be produced from a relatively small amount of nuclear fuel as compared to other conventional types of power stations. It has been found that complete fission of 1 kg of Uranium (U²³⁵) can produce as much energy as can be produced by the burning of 4,500 tons of high grade coal. Although the recovery of principal nuclear fuels (*i.e.*, Uranium and Thorium) is difficult and expensive, yet the total energy content of the estimated world reserves of these fuels are considerably higher than those of conventional fuels, *viz.*, coal, oil and gas. At present, energy crisis is gripping us and, therefore, nuclear energy can be successfully employed for producing low cost electrical energy on a large scale to meet the growing commercial and industrial demands.

Advantages

- (i) The amount of fuel required is quite small. Therefore, there is a considerable saving in the cost of fuel transportation.
- (ii) A nuclear power plant requires less space as compared to any other type of the same size.
- (iii) It has low running charges as a small amount of fuel is used for producing bulk electrical energy.
- (iv) This type of plant is very economical for producing bulk electric power.
- (v) It can be located near the load centres because it does not require large quantities of water and need not be near coal mines. Therefore, the cost of primary distribution is reduced.
- (vi) There are large deposits of nuclear fuels available all over the world. Therefore, such plants can ensure continued supply of electrical energy for thousands of years.
- (vii) It ensures reliability of operation.

Disadvantages

- (i) The fuel used is expensive and is difficult to recover.
- (ii) The capital cost on a nuclear plant is very high as compared to other types of plants.
- (iii) The erection and commissioning of the plant requires greater technical know-how.
- (iv) The fission by-products are generally radioactive and may cause a dangerous amount of radioactive pollution. Maintenance charges are high due to lack of standardization. Moreover, high salaries of specially trained personnel employed to handle the plant further raise the cost.
- (v) Nuclear power plants are not well suited for varying loads as the reactor does not respond to the load fluctuations efficiently.
- (vi) The disposal of the by-products, which are radioactive, is a big problem. They have either to be disposed off in a deep trench or in a sea away from sea-shore.

Schematic Arrangement of Nuclear Power Station

The schematic arrangement of a nuclear power station is shown in Fig. 2.7. The whole arrangement can be divided into the following main stages:

(i) Nuclear reactor (ii) Heat exchanger (iii) Steam turbine (iv) Alternator.

Nuclear reactor. It is an apparatus in which nuclear fuel (U235) is subjected to nuclear fission. It controls the chain reaction that starts once the fission is done. If the chain reaction is not controlled, the result will be an explosion due to the fast increase in the energy released.

A nuclear reactor is a cylindrical stout pressure vessel and houses fuel rods of Uranium, moderator and control rods (See Fig. 2.8). The fuel rods constitute the fission material and release huge amount of energy when bombarded with slow moving neutrons. The modera-tor consists of graphite rods which enclose the fuel rods. The moderator slows down the neutrons before they bombard the fuel rods. The control rods are of cadmium and are inserted into the reactor. Cadmium is strong neutron absorber and thus regulates the supply of neutrons for fission. When the control rods are pushed in deep enough, they absorb most of fission neutrons and hence few are available for chain reaction which, therefore, stops. However, as they are being withdrawn, more and more of these fission neutrons cause fission and hence the *intensity* of chain reaction (or heat produced) is increased. Therefore, by pulling out the control rods, power of the nuclear reactor is increased, whereas by pushing them in, it is reduced. In actual practice, the lowering or raising of control rods is accomplished automatically according to the requirement of load. The heat produced in the

reactor is removed by the coolant, generally a sodium metal. The coolant carries the heat to the heat exchanger.

Heat exchanger. The coolant gives up heat to the heat exchanger which is utilized in raising the steam. After giving up heat, the coolant is again fed to the reactor.

Steam turbine. The steam produced in the heat exchanger is led to the steam turbine through a valve. After doing a useful work in the turbine, the steam is exhausted to condenser. The condenser condenses the steam which is fed to the heat exchanger through feed water pump.

Alternator. The steam turbine drives the alternator which converts mechanical energy into electrical energy. The output from the alternator is delivered to the bus-bars through trans- former, circuit breakers and isolators.

Selection of Site for Nuclear Power Station

The following points should be kept in view while selecting the site for a nuclear power station:

Availability of water. As sufficient water is required for cooling purposes, therefore, the plant site should be located where ample quantity of water is available, *e.g.*, across a river or by sea-side.

Disposal of waste. The waste produced by fission in a nuclear power station is generally radioactive which must be disposed off properly to avoid health hazards. The waste should either be buried in a deep trench or disposed off in sea quite away from the sea shore. Therefore, the site selected for such a plant should have adequate arrangement for the disposal of radioactive waste.

Distance from populated areas. The site selected for a nuclear power station should be quite away from the populated areas as there is a danger of presence of radioactivity in the atmosphere near the plant. However, as a precautionary measure, *a dome* is used in the plant which does not allow the radioactivity to spread by wind or underground waterways.

Transportation facilities. The site selected for a nuclear power station should have adequate facilities in order to transport the heavy equipment during erection and to facilitate the movement of the workers employed in the plant.

From the above mentioned factors it becomes apparent that ideal choice for a nuclear power station would be near sea or river and away from thickly populated areas.

